如何保护网站安全
作者:聚福
发表于:2025-01-17
AI实战-加拿大的工业产品价格指数数据集分析预测实例(含4个源代码+18.20 MB完整的数据集)
代码手工整理,无语法错误,可运行。
包括:4个代码,共38.64 KB;数据大小:1个文件共18.20 MB。
使用到的模块:
numpy
pandas
os
sklearn.model_selection.train_test_split
tensorflow.keras.models.Sequential
tensorflow.keras.layers.Dense
sklearn.impute.KNNImputer
sklearn.impute.IterativeImputer
sklearn.linear_model.LinearRegression
matplotlib.pyplot
sklearn.datasets.make_blobs
sklearn.cluster.DBSCAN
sklearn.neighbors.LocalOutlierFactor
sklearn.ensemble.IsolationForest
sklearn.svm.OneClassSVM
sklearn.preprocessing.MinMaxScaler
sklearn.preprocessing.StandardScaler
sklearn.preprocessing.MaxAbsScaler
sklearn.preprocessing.RobustScaler
sklearn.preprocessing.PowerTransformer
sklearn.preprocessing.QuantileTransformer
sklearn.preprocessing.OneHotEncoder
sklearn.preprocessing.LabelEncoder
category_encoders
seaborn
sklearn.cluster.KMeans
sklearn.metrics.silhouette_score
sklearn.decomposition.PCA
sklearn.datasets.load_iris
scipy.cluster.hierarchy.linkage
scipy.cluster.hierarchy.dendrogram
sklearn.cluster.AgglomerativeClustering
sklearn.mixture.GaussianMixture
matplotlib
warnings
sklearn.metrics.mean_squared_error
sklearn.metrics.r2_score
plotly.express
sklearn.ensemble.RandomForestRegressor
sklearn.ensemble.GradientBoostingRegressor
catboost.CatBoostRegressor
sklearn.metrics.mean_absolute_error
sklearn.model_selection.RandomizedSearchCV
statsmodels.tsa.arima.model.ARIMA
版权声明
本文系作者发表,未经许可,不得转载